Enhancing EPHT with Satellite-Driven PM_{2.5} Exposure Modeling and Epidemiology – Year 4 (NCE) Report

Yang Liu, Ph.D.
Rollins School of Public Health
Emory University

September 25, 2013 St. Paul, MN

Project Team

- Emory: Yang Liu (PI), Jeremy Sarnat, Mitch Klein, and Xuefei Hu
- MSFC/USRA: Dale Quattrochi, Bill Crosson,
 Mohammad Al-Hamdan, Maury Estes, Sue Estes,
 Sarah Hemmings, and Gina Wade
- CDC: Judy Qualters, Paul Garbe, Helen Flowers, and Ambarish Vaidyanathan, Heather Strosnider, and Erika Rees

Sponsored by NASA Applied Science Program grant NNX09AT52G under J. Haynes and Sue Estes

Project Objectives

- Extend the spatial coverage of the PM_{2.5} indicators in CDC Tracking Network with NASA Earth observations
- Explore the utility of AOD based county level PM_{2.5} health indicators for public health surveillance
- Evaluate satellite PM_{2.5} estimates as a alternative exposure data source in environmental epidemiologic studies

Project Components

- A: integration of Earth science data (Year 1)
 - Spatially and temporally match various data sources to a defined master grid in study domain
- B: PM_{2.5} exposure modeling (Year 2)
 - Develop spatial statistical models to estimate PM_{2.5} concentrations and compare with existing Tracking datasets and independent field measurements
- C: PM_{2.5} health effects modeling (Year 3 and NCE)
 - Tracking evaluation and website launch
 - Associate model estimated PM_{2.5} concentrations with cardiorespiratory ED visits in an epidemiological model, and compare effects with conventional methods

Technical Approach

Milestones

Milestones	Deadline	Team	Status
Dissemination Through the Tracking Network	09/2013	CDC	Complete
Training and outreach	09/2013	Emory/CDC	Complete
Academic conferences	09/2013	Emory/CDC	ATS, URISA, ISEE
Epidemiological modeling	09/2013	Emory	Complete
Manuscripts	09/2013	Emory /CDC	ongoing
Final report	12/2013	Emory	In preparation

Final ARL: 8 (proposed ARL: 7)

Dissemination Through the Tracking Network

'Clear communication' information about PM_{2.5}, remote sensing, monitored and modeled sources of PM_{2.5} data

Remotely Sensed Annual Average PM_{2.5} Estimates, 2007

Remote Sensing data are available for the Southeastern United States only.

Can download 2001-2007 AODbased $PM_{2.5}$ data for the southeast U.S. at county-level

Public outreach

National Environmental Public Health Tracking Program Academic Partners of Excellence

A Summer Webinar Series Featuring Research by Tracking Program Partner Institutions

Part VII – Assessment of Remotely Sensed PM_{2.5} Estimates for the Tracking Network

Wednesday, August 28, 2013 1:30 – 2:30 p.m. EST Chamblee Campus, Building 107 Conference Room 3A

Join the webinar: https://www1.gotomeeting.com/register/391731697
Register for the webinar to get the call-in information.

Presenters

Yang Liu, Ph.D. Emory University Rollins School of Public Health

Rish Vaidyanathan
Centers for Disease Control and Prevention
National Environmental Public Health Tracking Program

Presentations in Yr 4

- 1. The application of satellite remote sensing data in a time-series study of asthma exacerbation in Metro Atlanta. **Conference of ISEE, ISES and ISIAQ**, Basel, Switzerland, August 19–23, 2013.
- A time series analysis of PM2.5 concentrations in the southeastern US using MAIAC AOD in a two-stage spatial statistical model. **Conference of ISEE, ISES and ISIAQ**, Basel, Switzerland, August 19–23, 2013.
- Enhancing EPHT with satellite-driven PM2.5 exposure modeling and epidemiology. **URISA's Fourth GIS in Public Health Conference,** Miami, FL, June 17–20, 2013.
- 4. Estimating ground-level PM2.5 concentrations in the southeastern United States using MAIAC AOD retrievals and a two-stage model. **American Thoracic Society International Conference,** Philadelphia, PA, May 17–22, 2013.
- 5. Estimating ground-level PM2.5 concentrations in the southeastern US using MAIAC AOD retrievals, **ISES Annual Meeting**, Seattle, WA, October 30, 2012.

Papers published or in press in Yr 4

- Hu X*, Waller LA, Al-Hamdan MZ, Crosson WL, Estes Jr MG, Estes SM, Quattrochi DA, Sarnat JA, **Liu Y**. 2013. Estimating ground-level PM2.5 concentrations in the southeastern US using geographically weighted regression. *Environ Res*. 121:1-10.
- Puttaswamy SJ, Nguyen H, Braverman A, Hu X, **Liu Y**. 2013. Statistical data fusion of multisensor AOD over the continental United States. *Geocarto International*. DOI: 10.1080/10106049.2013.827750.
- 3. Hu X*, Waller LA, Lyapustin A, Wang Y, Al-Hamdan MZ, Crosson WL, Estes MG, Estes SM, Quattrochi DA, Puttaswamy SJ, Liu Y. 2013a. Estimating ground-level PM_{2.5} concentrations in the southeastern United States using MAIAC AOD retrievals and a two-stage model. *Remote Sens Environ*. In press.
- 4. Kim M, Zhang X, Holt J, **Liu Y**. 2013. Spatio-temporal variations in the associations between hourly PM2.5 and aerosol optical depth (AOD) from MODIS sensors on Terra and Aqua. *Health*. In press.

Papers submitted or in preparation

- 1. Chang HH, Hu X, **Liu Y**. 2013. Calibrating MODIS aerosol optical depth for predicting daily PM_{2.5} concentrations via statistical downscaling. *J Expo Anal Environ Epidemiol*. In revision.
- Yu C*, Chen L, Zhang X, Girolamo LD, **Liu Y**. 2013. Effects of MODIS-retrieved cloud properties on PM2.5 levels in the southeastern United States. *Atmos Environ*. Submitted.
- 3. Hu X*, Waller LA, Lyapustin A, Wang Y, **Liu Y**. 2013b. 10-year spatial and temporal trends of PM_{2.5} concentrations in the southeastern US estimated using high-resolution satellite data. *Atmos Chem Phys*. Submitted.
- 4. One manuscript to be submitted to the Tracking special issue in Environmental Research.
- 5. One manuscript to be submitted to the ISEE/ISES/ISIAQ 2013 conference special issue in *International Journal of Environmental Research and Public Health*.
- 6. Maybe more.

CDC Comparison with Other Data Sources

- Federal reference methods (FRM) based monitoring data from Environmental Protection Agency's Air Quality System (AQS)
 - "Gold standard"
 - Most monitors sample every third day
- Community Multiscale Air Quality (CMAQ) model
 - A grid based numerical deterministic simulation model
- Bayesian space-time hierarchical fusion models
 - Combine air quality measurements with CMAQ predictions
 - Temporal resolution: daily
 - Version 1: hierarchical Bayesian (HB) model (available at 12 and 36 km grid resolution)
 - Version 2: Downscaler (DS) model (available at census tract centroids)

Assessment Framework

- Daily level comparison of modeled data sources of PM_{2.5} against monitor data for the Southeast (2006)
 - In-sample evaluation using AQS data
 - Independent validation using measurements from the Southeastern Aerosol Research and Characterization (SEARCH) Experiment network.
- □ Annual level comparison to explore the feasibility of generating the county level PM_{2.5} indicators (2006)
 - Annual Average
 - County level mortality benefits assessment

Temporal Characteristics of Data Sources

Percent of days with Remote Sensing (RS) data2006

Data Source	Median (Range) percent of daily completeness (Annual)
AQS	32 (15-100)
Remote Sensing (AOD)	56 (40-63)
CMAQ	100 (100-100)
Downscaler	100 (100-100)
SEARCH	93 (90-95)

Completeness of AOD data varies with time of the year

- JAN MAR has the lowest completeness
- OCT DEC has the highest completeness

SEARCH Network

Site	Location
CTR	Centreville, AL
ВНМ	North Birmingham, AL
YRK	Yorkville, GA
JST	Jefferson St., Atlanta, GA
OAK	Oak Grove, MS
GFP	Gulfport, MS
OLF	Outlying landing field, Pensacola, FL
PNS	Pensacola, FL

Southeastern Aerosol Research and Characterization (SEARCH)
Experiment network covers four states and has four urban-rural paired sites

- Developed as part of a publicprivate collaboration with EPRI (Electric Power Research Institute), Southern Company, and other utilities
- http://atmosphericresearch.com/
- Primarily formed to assess air quality in the Southeast

Comparison at SEARCH Sites

Daily Level Comparison

Note: satellite $PM_{2.5}$ was based on an earlier version of single stage GWR model

Urban sites (BHM, JST)

	SEARCH Site	SEARCH vs. AOD		SEARCH vs. CMAQ		SEARCH vs. DS	
		Root Mean Squared Deviation (µg/cu.m) (RMSD)	Relative Accuracy (%) (RA)	Root Mean Squared Deviation (µg/cu.m) (RMSD)	Relative Accuracy (%) (RA)	Root Mean Squared Deviation (µg/cu.m) (RMSD)	Relative Accuracy (%) (RA)
ı	BHM	3.6	79.4	7.1	59.3	2.8	83.6
	JST	3.5	78.8	5.6	65.7	2.6	84.2

Rural sites (CTR, OLF, YRK)

	SEARCH vs. AOD		SEARCH vs. CMAQ		SEARCH vs. DS	
SEARCH Site	Root Mean Squared Deviation (μg/cu.m) (RMSD)	Relative Accuracy (%) (RA)	Root Mean Squared Deviation (µg/cu.m) (RMSD)	Relative Accuracy (%) (RA)	Root Mean Squared Deviation (µg/cu.m) (RMSD)	Relative Accuracy (%) (RA)
CTR	9.8	17.1	6.5	45.7	3.2	72.9
OLF	8.0	30.6	6.7	41.8	3.1	72.8
YRK	6.4	54.3	6.1	56.3	2.7	80.3

Annual Level Bias Comparisc

Bland Altman Plot: Annual Mean PM2.5

Assessment Summar

- AOD-based data compare well with AQS monitoring data
- Overall, there is good agreement between DS and AOD based predictions where AQS data are available
- Performance of AOD based PM_{2.5} is relatively poor at rural locations

Epidemiological Analysis: background

- PM_{2.5} data from central monitoring sites have served as the foundation for exposure assignment in epidemiologic studies
- Ground monitors are often clustered in urban centers and may not fully capture PM_{2.5} spatial contrasts over large metropolitan areas

Satellite-based estimates of PM_{2.5} may improve exposure assignment in large population-based health studies

Study objectives

■ Estimate associations between daily PM_{2.5} concentrations and respiratory emergency department (ED) visits in 20-county metro Atlanta for 2001-2007

- Compare results among three PM_{2.5} exposure assignment approaches
 - Centrally-located ground monitor
 - Population-weighted average of multiple monitors
 - Spatially-resolved satellite-based estimates

20-County Atlanta PM_{2.5} Results

□ 101 grids over 2,556 days = 258,156 possible grid-day obs.

Metric	N	N Miss	Mean	Std Dev
Central Site	258,156	0	16.0	7.7
Central Site (matched)	141,735	116,421	17.0	8.3
Satellite	141,735	116,421	15.2	7.0

- 45% of grid-day satellite measurements missing largely due to cloud cover, therefore not at random
- PM_{2.5} estimates more similar over space than over time
 - Little difference in mean PM_{2.5} over the 20-county area
 - Range of grid cell means: 13.7 to 27.7 μg/m³ (90th percentile = 15.7 μg/m³)
- PM_{2.5} estimates among grid cells highly correlated
 - Temporal correlations among satellite $PM_{2.5}$: r > 0.95
 - □ Temporal correlations of satellite and ground $PM_{2.5}$: r = 0.81-0.87

Outcome Data

- Emergency department visit data
 - Individual-level ED visits obtained from 40 acute care hospitals in the study area
 - ED daily counts of respiratory outcomes aggregated by grid cell

Outcome		ED visits per day		ED visits per day per grid cell	
		Mean	Std Dev	Mean	Std Dev
Respiratory disease	RESP	386.1	131.7	3.8	5.8
Upper respiratory infection	URI	226.3	84.4	2.2	3.5
Pneumonia	PNEU	49.6	19.9	0.5	0.9
COPD	COPD	18.4	6.7	0.2	0.5
Asthma/Wheeze	ASW	78.3	27.1	0.8	1.7

Epidemiologic Model

 Poisson generalized linear models to estimate the association between ED visits and same-day PM_{2.5}

$$E(Y_{gt}) = \beta_0 + \beta_1 PM_{gt} + covariate terms$$

- Y_{gt} represents the ED counts for grid g on day t
- Hybrid case-crossover smoothing approach, where covariate are:
 - \square Indicator variable for grid cell \rightarrow controls for spatial confounding, such as SES
 - Indicator variables for month, year, day-of week/holidays & interactions
 - Spline terms with seasonal knots but with the same parameters each year
 - Cubic terms for max temp and its linear interaction with month
 - Cubic terms for min temp and cubic terms for mean dew point
 - □ Hospital indicators if they don't coincide with the month dummy variables

Epidemiologic Results

Epidemiologic Results Summary

- Impact of spatial refinement comparing CS, PWA, and satellite matched results
 - RRs among the 3 exposure metrics consistent (confidence intervals all overlap)
 - Trends for slightly stronger associations using satellite estimates;
 suggestive of reduced exposure measurement error
- Population density highest towards center of study domain, therefore general agreement of CS and satellitebased RRs anticipated
- □ 12 km grid data may be too coarse to see much more refinement in exposure precision